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Abstract

A series of tensile strength tests were performed
on a wide variety of sponsor supplied materials. A
complete description of each material is given, and
results are presented for unnotched and notched tensile
strengths. The data are analyzed using Weibull, normal,
and log normal statistics. The press-molded materials
exhibit more scatter than the continuous or quasi-
continuous processes. A system for estimating conservative
design parameters is developed, and the results are applied
to the unnotched tensile strength. Data are presented for
tensile strength in the presence of a slit notch, and a method
is given to calculate notched strength over a variety of
notch sizes. Since the slit notch geometry gives the most
strenuous stress concentration, the results may be used
to give conservative estimates for other geometries. The
use of "stress oriented" notched strength predictions is
shown to be superior to that of classical Linear Elastic

Fracture Mechanics (LEFM).

Acoession Por "R

. KTIS QRA&I 4
| DTIC TaB 0
0l

Unannoumce

i‘.—_‘....? ¥
Distridbution/ - :
Availebility Codes
Avall and/op.
Diast Special

ii




Table of Contents

1. Material Descriptions and Test Geometry. . . . . .

2. Summary of Test Results. . . . .

3. Data Analysis. « . « . + « « . .

3.1 Inference of Weibull Parameters and Design

Considerations. . . . . .

Characterization of the Weibull

Distribution . . . .

Statistical Inference of
Parameters . . . . . . .

Weibull

Design Considerations of Weibull

Statistics . . . . . . .

3.2 Tensile versus Flexural Strength. . . . . . .

3.3 Inference of Normal and Log
and Design Considerations .

Design Considerations of
Statistics . . . . . .

3.4 Notch Sensitivity . . .

4. Discussion and Conclusions . . .
Data and Statistics. .
Data Variability . . .

Notched Strength . . .

\

Normal Parameters

Normal

Relationship between Notch Sensitivity and

Tensile Data Variability

iii

. . - . -

16

19

19

19

21

25
41

43

44
48

59
59
59
61

62




Introduction

The use of composite materials in load-bearing
applications demands the use of reliability and statistical
considerations. For metals design, this is covered by
handbook "safety factors."™ Due to the variability of
composite constituents and processing, suitable methods
must be developed to calculate reliability. In addition,
we must have assurance that the results are conservative
so as to produce a reliable design. This report presents
tensile strength data for a variety of composite material
systems, and addresses the methods of analysis necessary

for design.

Notches are important to consider in structural
design, since they can be induced intentionally as
cut-outs, or unintentionally as fabrication errors.

There is a "notch size effect" in composites which demands
improved methods of analysis over the classical "stress
concentration factor" and "critical stress intensity
factor" approaches. This report presents data for

3 notch sizes, and describes a method for predicting

strength at other notch sizes.
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1. Material Descriptions and Test Geometry

The following gives a description of the
materials used in the 1979-80 Materials Characterization
Program. The reinforcements include glass, graphite,
and hybrid combinations; the molding processes include
compression, injection, and pultrusion. Results are
tabulated in section 2, and design and statistical

considerations are discussed in section 3.

The materials were submitted in sheet form to the
University of Delaware, and straight-sided tensile specimens
were cut from sheet using a water-cooled surface grinder
equipped with a diamond-impregnated cutting wheel. Bevelled
end tabs of woven fiberglass were adhesively bonded to
the specimen after the specimen surface was sanded. 1In
addition, Material "F" was machined into a dogbone
(see Figure 2) due to persistent failure in the grips.
Material "D" was tested in flexure since no adequate

adhesive could be found for this high tensile strength.

The asterisk (*) found on the material descriptions

on the following pages denotes a registered trademark.




Material "A"

Supplied by ICI Americas

Material Description:

ITP-1054 Vinyl ester
25 w% XPL-1041 vinyl ester (half resin, half styrene)
50 w% OCF#433 glass (chopped), 1" length

25 w% camel-~white CaCO3

Compression molded at:
280°F
400 psi
2 minutes

charge 10" x 10" , final dimensions 12" x 12"

Specimen Geometry:

See figure 1; average thickness is 0.135".




Material "B"

Supplied by General Motors

Material Description:

SMC-R50 Vinyl ester
50 w% Dow Derakane 790 paste+
50 w$ OCF 433AA-114 yield, 1" chopped glass
tpaste consists of (parts by weight)
100 resin
1 T-butyl perbenzoate
100 camel white CaCO3
2 Zinc stearate (mold release)
7 MgO slurry
Compression molded at:
300°F
600 psi
3 minutes

charge 18 3/4" x 12 1/2", final dimensions 21" x 24"

Specimen Geometry:

See figure 1l; average thickness 0.142". Tensile

direction is the 24" direction of the original panel.




Material "C"

Supplied by PPG Industries

Material Description:

XMC* - 3

weight percentages: Continuous glass 50.4 w%
PPG 1064-k15XMC strand

Chopped glass 21.6 w%
PPG 1064-k15XMC strand

Resin 28.0 w% PPG Selectron 50335
(semi-rigid)

molding conditions: 300°F, 500 psi, 3 minutes
charging and final dimensions: charge 8 1/8" x 16"
(centered), final dimensions 9" x 16" (continuous

glass in 16" direction).

Specimen Geometry:

See figure 1; average thickness is 0.109". Tensile

direction is in the continuous glass direction.




Material "D"

Supplied by General Electric

Material Description:

Pultruded glass/epoxy (No Commercial Designation)
79 w% glass, PPG 713 NT-16 Roving
21 w% Arnox* 3220 epoxy
Molding conditions:
die length 40"
die temperature 150°C
Resin bath temperature 60°C
Pultrusion rate 6"/min.

~Post cure for 4 hours at 190°C

Specimen Geometry:

Straight-sided 1/2" wide x 3" long x 0.120" thick
specimen for flexure data scatter test; 2" span for 3 point
flexure. The length direction of the beam was in the

pultrusion direction. No end tabs were used.




Material "E"

Supplied by International Harvester

Material Description:

SMC C45R20

Molding

35 w% Dow Derakane 790 vinyl ester

45 w% aligned, continuous glass OCF #433

20 w% random chopped glass OCF #433 (Length
Approximately 1")

ply seguence R/C, C/R, R/C, C/R where
R = random, C = continuous

conditions:

300°F

1,000 psi

3 minutes

charge 11 1/2" x 17 1/2", final dimension 12" x 18"

continuous glass in 18" direction

Specimen Geometry:

See figure 1l; average thickness 0.096". Tensile

direction is in the 18" direction of the original panel.




Material "F"

Supplied by E. I. Du Pont Co.

Material Description:

Rynite*545
45 w% chopped glass, 3/16" initial length
55 wg% polyethylene terepthalate resin
molding conditions: Melt temperature 575°F(300°C)
Injection Pressure 8,000 psi
Mold fill time 1.2 sec
Mold temperature 100°C
Cycle time 46 sec
Dogbone specimens cut from 4" x 10" plaque per Figure 2.
Gating: Plaque was center end gated, with essentially

a point gate (very slight fan)

Specimen Geometry:

For tensile data scatter, see figure 2. For
notch sensitivity, see figure 1 except 10" total length.
Specimen thickness 0.125". Tensile direction was in the

mold-£ill (10") direction.




Material "G"

Supplied by Graftek

Material Description:

Graftek molding compound Commercial Designation GT-50N
49 wg% Zytel 101, Nylon 6-6
51 w% chopped graphite Manufacturer and
Length unknown

Molding conditions:

machine - Aurburg 221/221P 25 mm reciprocating screw
Unknown Injection Conditions

(temperature, pressure, mold-fill and cycle times)

Gating: end gated

Specimen Geometry:

See figure 3; average thickness 0.130". No notched
strength tests were made due to insufficient width. Mold

flashing was removed by a very light sanding.




Material "I"

Supplied by Ford Motor

Material Description:

R-65 Vinyl ester
67 w% OCF #411 roving, chopped 1" length
33 w% Dow Derakane 790 vinyl ester paste+
tpaste composed of: (parts by weight)
100 Dow 790 resin
1 TBPB
20 snowflake CaCO3
4 zinc stearate
2 Maglite D slurry
Molding conditions:
300°F
600 psi
3 minutes

Charge Size 12" x 24"; final dimensions 14" x 26"

Specimen Geometry:

See figure 1l; average thickness 0.142". Tensile

direction is the 26" direction of the original panels.
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Material "J"

Supplied by Celanese

Material Description:

Graphite/Glass hybrid (No Commercial Designation)
Unidirectional graphite faces, Celion 6000 fiber in
PPG 50335 polyester resin, nominal 0.011" thick
each face, Nominal 40 w% resin, 60 wg% fiber
HMC Core; 35 w% PPG 50335 polyester resin, 65 w%
PPG type 518 Roving, 1" chopped; Semi Rigid

(standard) Formula, Nominal 0.078" thick
OVERALL ANALYSIS (EXPERIMENTALLY Determined):

wt of faces

total wt = 0.20

wt of graphite fiber _
total wt -

MOLDING CONDITIONS:

0.12

305°F, 700 psi, for 3 min; "bumped" 3 times

to release styrene to avoid surface bubbles
charge approximate 80-85% for HMC core
final dimensions 12" x 12"

Specimen Geometry:
See figure 1l; average thickness 0.100". Tensile

direction is in the 0° graphite fiber direction.
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Material "L"

Supplied by Hercules

Material Description:

Graphite/Glass Hybrid (unknown commercial designation)

Unidirectional graphite, Hercules AS4P beamed fiber in
OCF E987 polyester resin

Core: C20R45, 65 w% OCF#433 AE113 Roving; (20 w%
continuous, 45 w%, 1" chopped glass) 35 w% OCF E987
polyester resin; C/R, R/C lay-up;

OVERALL ANALYSIS:

wt glass fiber _
total wt = 0.501

wt carbon fiber = 0.133

total wt
wt resin _
total wt 0.365
wt carbon fiber = 0.383

wt graphite skin layers

Processing:

SMC made to nominal 65 % fiber loading with slightly
resin-rich carbon fiber plies (due to difference in wet-out
characteristics) on conventional SMC - C/R machine. Molded in
12" by 18" matched metal mold 3 min. at 1000 psi and 300°F.

Continuous carbon fiber skins were placed over a balanced,
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symmetric core of C20R45 (20 wt% continuous, 45 wt% 1"
random chopped glass) glass core with all continuous
reinforcement aligned in a parallel fashion (the

innermost reinforcement is chopped glass).

Specimen Geometry:

See figure 1; average thickness 0.101". Tensile

direction is the continuous fiber direction.
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2. Summary of Test Results

The tensile strength results are shown in
Table 1. The strengths have been analyzed by
fitting the data to three statistical models:
Weibull, Normal, and Log-Normal. The meaning of the
inferred statistical results is explained in Section III
(Data Analysis). All specimens were tested in tension,
25 replicates, except material "D," which was tested in

flexure.

The notched strength results are presented in
Table 2. The specimens have an ultrasonically
machined, very thin, center notch. Each notch size for
each material has 5 replicates. Specimens of material
"G" were too narrow to permit notched strength tests.
Material D showed extensive axial splitting and end tab

debonding, due to its high ultimate strength.
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C 0.127 65,600 65,800 29,400
0.250 52,500 53,100 33,300
0.375 48,900 50,200 38,500

E 0.125 97,500 97,800 43,300
0.250 87,600 88,600 55,500
0.375 75,600 77,600 59,900

F 0.125 13,100 13,200 5,820
0.250 - 10,400 10,500 6,590
0.375 8,530 8,760 6,720

I 0.125 26,300 26,400 11,700
0.256 22,300 22,600 14,300
0.375 18,800 19,300 14,800

J 0.125 ‘ 56,500 56,700 25,100
0.250 45,600 46,100 28,900
0.375 38,800 39,800 30,600

L ©0.125 68,200 68,400 30,300
0.250 53,000 53,600 33,600
0.375 49,000 50,300 38,600

1. oy = (FWC)GN Oy = avg. measured failure stress

FWC = Finite Width Correction factor

1/2
1:% tan{%‘iﬂ [Paris & Sih]

where W = width at specimen = 1.50 in.
= crack half-length

the [%;] argument is in radians

2. k = critical stress intensity factor = oy v/7c

18
Table 2
' Notched Tensile Strength
Nominal "True" 1 Critical Stress 2
Strength Strength Intensity Factor
Material Crack-length (in) Oy o§ k
2c . . _Iq
i psi psi psivin
A 0.126 21,800 21,900 9,730
0.250 16,700 16,900 10,600
0.375 14,900 15,300 11,700
B 0.125 24,100 24,200 10,700
0.253" 19,600 19,800 12,500
0.375 16,800 17,500 13,400
I Ic
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3. DATA ANALYSIS

3.1 Inference of Weibull Parameters and Design Considerations

. Characteristics of the Weibull Distribution

The generally used form for a cumulative

distribution function (or simply "distribution function")

F is:

F(o) = P(og < 0) (1)

where Og is a random variable*, P denotes probability,
and o is the particular value of interest. For a set of
data which obeys a Weibull distribution, the distribution
function is:
F(o) = 1 - exp[-0/B)%] o > 0 (2)

where exp is exponential function

R is the scale or location parameter

o is the shape parameter

Mathematicians often use the equivalent notation

s ¢ Wi, (3)
to show that ¢ obeys a Weibull distribution. If Og is
the tensile strength and o is the applied stress, then

F(o) represents the probability of failure.

We are often interested in the reliability, i.e.

the probability that the random variable (outcome of an

experiment) exceeds the particular value of interest.

*

A "random variable" is simply the outcome of an experiment.
For example, the value shown on a fair die after a die toss
is a random variable.
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This reliability is expressed as

R(og) = P(o_ > ©o) (4)

or

R(c) = 1 = F (o)
and, for a Weibull distribution, is given by:

R(0) = exp[-(0/8)%] o > 0 (5)
If Og is the tensile strength and ¢ is the applied

stress, then R(o) represents the probability of survival.

The mean or average of the population can be

expressed in terms of a,B as

]

g BT (1 + 1/u) (6)
where I' is the Gamma function, a table took-up. For

o > 1, which is the normal case for strength results,
0.886 < I < 1, so that 0 < B. The average is slightly
less than the scale parameter due to the skewness of
the distribution. The standard deviation for a
Weibull distribution is:

std. Dev. S = B[T(L + 2/a) - Fz(l + l/oc)]l/2

(7)
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Statistical Inference of Weibull Parameters

Given a set of sample data from an experiment,
we would like to predict estimates o and B for the entire
(infinite) population. One way to do this is by
solution of the maximum likelihood equaﬁions; this
requires use of a computer or programmable calculator.
The second method is by the use of logarithms; this
method should be used only if a digital computer or

programmable calculator is not available.

Maximum Likelihood Method

This method has a sound theoretical basis and allows
interval estimates to be made for the statistics a,8. It
demands solution of a very non-linear equation, but is

routine with a computer or programmable calculator.

The maximum likelihood estimator §n for a set of
n random variables X5 is given by the solution of:
Define Likelihood

L(6) = f(xl;e)f(xz;e) .o f(xn;e) (8)

and for Weibull Distribution,

n - o=-1 .
MAX L(8) = l l % [T%] exp{l{T%]:} (9)

1=1

where f is the p.d.f. of X, and 6 is the true population

parameter, and L(86) reaches a maximum at § [Mann, Schafer.
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and Singpurwalla]. The maximization equation (9)
acts to maximize the likelihood of "legitimizing"
the outcome of a given experiment [Mendenhall and

Schaeffer].

The maximum likelihood equations for

4,8 are given by:

n & n
k(@) =0 = 1=k P S . (10)
n g
& n
] X,
i=1 *
A Lon g 1/8
8 = |= 7 x¢ (11)

A

The &,B are point estimates to the true population
parameters o,B [Mann, et al.]. In practice,
equation (10) is solved for o and the result used in
(11) to get 8. For small sample sizes (n < 30), the
estimates a,f from equations (10, (11) are biased.
Fortunately, there are correction factors available
which depend only on n, the number of data points
[Thoman, Bain, and Antle]. These correction factors

B(n), shown below, thus provide unbiasing so that

E[B(n)a] = o (12)
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Table 3

Unbiasing Factors B(n) for MLE of a

n S 6 7 8 9 10 11 12 13 14 15 16

B({n) .669 .752 .792 .820 .842 .859 .872 .883 .893 .901 .908 .914

n 18 20 22 24 26 28 30 32 34 36 38 40
B(n) .923 .931 .938 .943 .947 .951 .955 .958 .960 .962 .964 .966

n 42 44 46 48 50 52 54 56 58 60 62 64
B(n) .988 .970 .971 .972 .973 .974 .975 .976 .977 .578 .979 .980

n 66 68 70 72 74 76 78 80 85 90 100 120

B(n) .980 .931F .981 .982 .982 .983 .983 .984 .985 .986 .987 .990

One thus solves equation (10) for o, unbiases the
estimate by multiplying it by B{(n) from Table 3, and then

solves for §.

Logarithm Method

The data are ranked from lowest to highest, and
a ranking statistic is used. The rank can be simple,
mean, median, hazard, or Hazen; but there is a preference

for the median rank.* This median rank is applied to

the ranked data as

Pj-from tables

or
. J - 0.3
Pj " n + 0.4 (13)
* .
Simple Rank P. = j/n
Mean Rank P. = j/n+l




which gives a series of j ranks of the n total data points.

This rank statistic is used as an approximation to the
distribution function F. It is helpful to draw a

graph of data value (abcissa) versus rank (ordinate).

We proceed to manipulate the formula (2) into a

convenient linear form. Since P(oS < o) = F(o),

1 -F = expl-(a/8)%] (14)

Taking natural logarithms,

n(l - F) = -(o/8)% (15)

Clearing the minus sign and again taking natural

logarithms,

gn(-4n(l - F) = ofn(a/RB) (16a)
or

tno = %E gn[-2n(l - F)] + &np (16b)

The equation (16b) is in linear form for a least squares
analysis of data points 2no versus n[-fn(l-Rank)]. The

slope is 1/a, and &nf can be easily calculated. "Weibull

function" probability paper exists which has the transformation

(16b) implicit in its scale.

Note that the form (1l6b) is also usable to calculate

an allowable ¢ for a given structural reliability R=1 - F,

once the ¢ and B are known.
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Problems with logarithm method: The a,B8 found

by linear regression on (16b) are "point estimates.”

To obtain meaningful interval estimates of say a
requires us to assume that the least squares statistics
1/a and enG are normally distributed. This assumption
seems doubtful at best. The logarithm method also has
difficulty handling censored data points, which can

occur in fatigue experiments (as run-out, etc.).

Design Considerations of Weibull Statistics

The estimates &,§ of the population parameters
a,B shown in Table 1 are derived by using data and
solving Maximum Likelihood equations. These estimates,
then, are themselves distributed; re-running the experiment
could produce different estimates. We would like to choose
our estimates so that we conservatively underestimate the
reliability. This can be seen from figure 4. Any time
we predict a reliability that is lower than the actual
reliability as determined by experiment using a ranking

formula, we are conservative.

We would like to use our estimates for o and B,
and "downgrade" them in a systematic manner so as to
minimize our predicted reliability. Since a designer
would never use a failure stress greater than the average,

consider the region X < X < B.
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~ A
If we choose lower bounds o < 0, BL < B, we minimize

the predicted reliability for any stress less than the

mean. This can be expressed as

o
L
-(x/B.) _ o
R(xiap 8y) =e = <e B - rea,p)
(17)
for ap <@
B, < B
X <8

See figure 5.

Using information from [Thoman, et al.], we get
the following relations to get one-sided 95% confidence

limits for o and B:

1.381 for n = 25

ar, a/ILY %

~

Bexp

B

3 (18)
- =
L 2} ZY 0.3705 for n 25

The only conceptual difficulty in using the results of

[Thoman et al.] is that the lower estimates o g

L 14

are found by searching out upper estimates for the

L

functions &/u and &Rn(é/ﬁ). The convenient aspect of

the use of "percentage points” RY is that it is independent

of the particular values of the estimates &,é.

The values for ap,. s BL are shown in Table 4.

The plots of tensile strength data, and curves for the
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B

estimates &,@ and the lower bound estimates ar s B

are shown in figures 6 through 15. The curves using
ap BL are uniformly conservative, as all data points
fall below them. We thus predict a lower reliability

than we actually see.
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Table 4
Lower Bound (Conservative) Values
for Weibull Parameters
Lower Limits for
Material | MLE point estimates 95% Confidence
i (Ssi) L BL-
(psi)
A 16.6 23,200 12.0 22,700
B 12.9 26,400 9.34 25,600
C 21.6 85,500 15.6 84,000
D 41.1 167,000 29.8 166,000
E 27.6 + 113,000 20.0 111,000
F 17.9 19,800 13.0 19,400
G 95.2 31,800 68.9 31,700
I 35.9 32,700 26.0 32,400
J 14.8 57,300 10.7 55,800
K 10.9 75,800 7.89 73,200
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3.2 Tensile vs. Flexural Strength

For a homogeneous brittle material, the
flexural strength is often higher than the tensile
strength. This has been explained by [Bullock]
as a volume effect of the stresses. The reasoning uses
the Weibull formulation for reliability of a material

under tensile stress:

R(o) = exp -j (o/Bo)a (19)
A%
where V is the volume under tension
When the integral (19) is evaluated for a tensile volume,
it gives:

R(0)

exp [}(c/eT>&] (20)

- -1/a
where BT = BO(VT)

and VT = tensile volume
When the integral (19) is evaluated for a 3 point flexural

specimen, it gives:

R(0) = exp[-(0/B,)"] (21)
1/a
_ 2(a + 1)
where BF = BO[}_TT——;1
f a—
and V. is the total volume of the flexural specimen

£
(assume equal tensile and compressive modulus)
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The same volume of material Vv, if tested in tension
and 3-point flexure, gives a ratio of average strengths

as follows:

5. B.T(L + 1/a)
5 = ET T (22a)
OF F o
or
5
T _ 1
= = (22b)

F o o[2(q + 1]Y7¢

For material "D," tested in flexure, the predicted

average tensile strength would be

g,

T 167,000 psi [0.898]

150,000 psi

Note also that the volume effect predicted from (20) or
(21) is relatively mild. Doubling the volume with shape
parameter o = 20 only decreases the average strength by

a factor of 1.035, for example. A cautionary note should
be added that some experimental results have been found

which contradict the simple relation (22) [Whitney and Knight].




3.3 Inference of Normal and Log Normal Parameters and
Design Considerations

The tensile strength data may also be analyzed
by fitting it to a normal distribution. The standard
normal statistics are used to give the results found

in Table 1, mainly:

Average X = ]X./n (23)
i
Std. Deviation S = -1 (24a)
2
XS
= _i_ n_x2
B a1 " a-T % (24b)

The log normal statistics shown in Table 1 are the
result of assuming that the log of the strength may be
normally distributed. Thus we define a new variable

Y = log g X ~(25)

and operate on Yby using equations (23) and (24). This

yields a mean iiOG and standard deviation SL as shown

0G

in the summary, Table 1.
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Design Considerations of Normal Statistics

We would like to obtain extreme bound estimates
so that we minimize the predicted reliability. That is,
we need to predict a probability of failure based on our
estimate which always exceeds the experimental probability
of failure determined by ranking. (See section 3.1). The
probability of failure is

P[os < a] = 9(z) (26)

where Og is random variable of strength

a is particular specified stress
$ is the normal function,

z 2
6(z) = f Y /2 dy
il

|

a-
is the "standard" (reduced) variable, S
is the standard deviation
is the average strength

>l N

Since ¢ increases with increasing z, we choose bounds
on X and ¢ which maximize z. Choose the region
a <X
which makes sense; a designer would never consider using
a stress value above the average. To maximize z, we
take the experimental statistics X,S and find a one-sided

95¢ confidence lower bound for X, and upper bound for S.
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Using standard techniques for interval estimation

[Hays and Winkler], a lower 95% confidence limit for the
average is*:

— — *
X, =X - t*s (27)
vn

= "t" statistic (1.708 for this case)

g
=2
()
H
o
o+
*
|

standard deviation

)]
i

n = number of data (25 for this case)
The results of this calculation are in Table 5. Similarly,
an upper 95% confidence limit for S may be found using

the Chi-squared distribution (XZ) as:

_ (n-1)
Su = i// 5 (28)
X(n-1;0.95)

where n = number of data (25 here)

X%n—l;ogs) = Chi-squared for n-1 degrees
of freedom, up to 95% (13.85 here)

These results are also shown in Table 5.

As an example of this conservatism, take
material "A" under an applied stress of 19,000 psi.
The results using the experimental statistics directly

are:

_ 19,000-22,500
1720

P[OS < 19,000] = ¢(-2.03) = 2.1 ¥ probability of failure

If we use bounded estimates of the experimental statistics,

*
If y is the true population mean, then

Probability [Xp < pu < «] = 0.95
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we get

- 19,000-21,900

2370 = -1.28

Probability of failure 10.0%
That is, the use of conservative bounds on our estimates
causes us to maximize our predicted probability of

failure.
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Table 5

Lower Bound Averages for Normal Statistics

Material i_ ’ S XL Su
(psi) (psi) (psi) (psi)

A 22,500 1,720 21,900 2,270
B 25,400 2,080 24,700 2,750
C 83,600 4,220 82,200 5,570
D 165,000 4,780 163,000 6,310
E 112,000 4,100 111,000 5,410
F 19,300 968 19,000 1,280
G 31,600 395 31,500 520
I 32,300 949 32,000 1,250
J 55,600 3,920 54,300 5,170
L 72,900 7,270 70,400 9,590
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3.4 Notch Sensitivity

The development which follows is primarily for
materials which fail in a "net tension" mode when
placed under tension with a notch perpendicular to
the applied load. (See fig. 1l.) This failure mode could
also be referred to as "self-similar crack growth,"
since the notch growth is in the same direction as the

original notch.

The details of this development may be found
in [Pipes, Wetherhold and Gillespie]. Consider the

variation of notch strength with notch length given by:

1/2
;“— A (29)
0
where
oN = notched tensile strength
Oy = unnotched tensile strength
C = notch half-length
k = notch sensitivity factor
m = exponential factor, m < 1

The use of equation (29) requires a minimum of two
notch sizes to determine the empirical parameters m, k.
Once these are found, equation (29) allows prediction of
notch strength over a wide variety of notch sizes.

The method used to calculate m and k was by minimizing




the squared error between the curve (29) and the data.
Increasing m and k increases the notch sensitivity

(faster strength reduction in the presence of a notch).

Table 6 shows the notch sensitivity factors for
the materials tested. Material G was too narrow for
notch testing; Material D showed extensive axial
splitting and endtab debonding. The difference in the
notched strength values caused by the finite width
corrections (see Table 2) are not significant, and so
or 0. could be used. Figures 16 through 23

N N
show plots of the notched strength versus notch size.

either ¢




50

Table 6

Notched Strength Parameters

Notch Sensitivity

Material Crack length GN/OO Parameters
2 ¢ (inch) m k
A 0.126 0.97
0.250 0.74 -0.63 49.8
0.375 0.66
B 0.125 0.95
0.253 0.77 -0.62 46.6
0.375 0.66
C 0.127 0.79
0.250 0.69 0.11 18.1
0.375 0.59
D AXIAL SPLITTING, ENDTAB DEBONDING

see Section 4

E 0.125 0.87
0.250 0.79 0.0 14.1
0.375 0.68

F 0.125 0.68
0.250 0.54 -0.03 47.4
0.375 0.44

G NOT TESTED - t00O narrow

I 0.125 0.82
0.256 0.69 -0.04 23.6
0.375 0.58

J 0.125 1.02
0.250 0.82 ~-0.69 50.0
0.375 0.61

L 0.125 0.94
0.250 0.73 -0.37 31.3

0.375 0.67
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4, Discussion and Conclusions

Data and Statistics

Data have been given for the tensile strength
and its degree of variability for a variety of composite
material systems. The data fit a Weibull distribution
well, and conservative parameters are given which allow
reliability predictions. The advantages of a Weibull
distribution include:
+ Reliability can be calculated in closed form,
without using tables
+ Results agree with intuition on "weak link" or
brittle failure modes ([Weibull].
The development for calculating Weibull, normal, and log
normal statistics from data and developing conservative
design parameters is given in detail. The results are
uniformly conservative for all materials tested. (See
Figures 6 through 15). The theoretical relation between

tensile and flexural strengths is also given.

Data Variability

The degree of tensile data scatter for most of
the materials tested was virtually identical. The average

shape parameter o (reflects the data scatter) is:
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* 29.5 average for all materials tested

It

Lo 20.0 average for press-molded materials
The press-molded materials have higher data scatter;
to design to a given degree of reliability, we must
utilize a smaller fraction of their average strength.
The two materials (D and G)exhibiting the smallest
scatter were a pultruded and an injection molded
material. These are continuous or automated processes
in which one expects a higher degree of repeatability.

The other injection molded material (F) probably loses

its repeatability due to the machining process.

The hybrid materials might be expected to
have minimal data scatter due to the presence of
continuous graphite reinforcement. However, the
degree of scatter is comparable to that of most SMC
materials. There are two possible explanations for
this. The chopped glass participates heavily in the
fracture process, and often delaminates from the graphite
face sheets. The inherent variability of a chopped
glass compound thus comes into play. Secondly, the
present process of producing the hybrid is as a laboratory
batch process. As production methods are stabilized

into a standard process, the variability should decrease.
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Notched Strength

Data are presented for the notched static strength
of the materials, and show a good fit to the model. The
parameters required to predict notched strength over a
wide range of notch sizes are given. Since the notch
geometry is the most severe test, use of the strength
formula for notches should give a conservative prediction

is used for circular, slot, or elliptical holes.

The use of the model (equation 29) gives superior
results to those of classical "critical stress inten-
sity factor" approach. 1If this approach, used in
linear elastic fracture mechanics (LEFM), were valid,

value in Table 2 would be a constant independent

the kIC

of hole size for a given material. It is emphatically

not constant; kIC increases with increasing notch size
for every material tested. Models such as those in
[Pipes, et al.] which account for the integrated effect
of stress over a volume appear best suited to explain

the hole size effect in composites.

Several materials tested showed little strength change

for small notches. This gives an indication of the size of

inherent flaws. That is, if placing a 1/8" notch does not

affect strength, the inherent flaw distribution of an




unnotched sample must contain flaws on the order of 1/8".

This could be used as a quality control mechanism, since
a large inherent flaw size indicates a potentially low

strength material.

Relationship between Notch Sensitivity and Tensile Data

Variability

It has been proposed from theoretical grounds
that the degree of tensile strength data scatter should
be related to the notch sensitivity for a brittle material
[Wetherhold]. The prediction is that a material with a
high degree of data scatter should be relatively
insensitive to the presence of a notch. Both properties
rely on the size and distribution of inherent flaws.
A high o value arises from a very narrow spread of tensile
strength data. This implies that the size and distribution
of inherent flaws are also very narrowly distributed. Due
to the inherent"perfection" or repeatability of a high o
material, the addition of a flaw or notch has a dramatic

effect on the strength.

The results of this testing program suggest that
this relationship is true, but the returns are fragmentary.
The highest o material (G) was too narrow to test with

notches. The pultruded material (G) showed low scatter
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(high a) in flexure, but the notch sensitivity results
are extremely incomplete due to axial splitting and
"brooming™ of fibers. Nonetheless, the results suggest
an extremely rapid strength degradation in the presence
of a small notch. See Table 7. These results are not

presented in Table 2 due to their incomplete nature.

Table 7
Crack Length oy/% gumbgr of
2c (inch) pecimens
0.125 0.66 2
0.250 0.63 4
0.375 : 0.53 2

0y = 150,000 psi (see Section 3.2)
Specimen dimensions were as shown in figure 1.

At the other end of the spectrum, examine the hybrid
material J, which exhibits little strength degradation in
the presence of a small (0.125") notch. This material
also has a fairly large data scatter (low o), which is
consistent with prediction. There are, however, enough
ambivalent results that the conclusions must be considered

tentative. (See material I, for example.)
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